Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Christian Näther,* Mario Wriedt and Inke Jeß

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å H-atom completeness 99% Disorder in solvent or counterion R factor = 0.043 wR factor = 0.111 Data-to-parameter ratio = 20.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dibromotetrakis(4-methylimidazole)copper(II) dihydrate

In the structure of the title compound, $[CuBr_2(C_4H_6-N_2)_4]\cdot 2H_2O$, the Cu^{II} atoms are surrounded by four 4methylimidazole ligands within a slightly distorted square plane. The coordination sphere is completed by two contacts to bromide ligands which are elongated due to Jahn–Teller distortion. The coordination polyhedra around the Cu^{II} cations can be described as strongly distorted octahedral. There are two crystallographically independent halfcomplexes in the asymmetric unit, in which the Cu^{II} cations are located on centres of inversion; the two crystallographically independent 4-methylimidazole ligands, the bromide anions and the water molecules occupy general positions. The complexes are connected *via* N–H···Br, N–H···O and O– H···O hydrogen bonding.

Comment

In the crystal structure of the title compound, (I), the Cu^{II} atoms are coordinated by four N atoms of 4-methylimidazole ligands, forming a slightly distorted square plane. The Cu-N distances of 2.003 (3), 2.014 (3), 1.993 (3) and 2.029 (3) Å are comparable to those in other 4-methylimidazole-copper(II) complexes, such as dichlorotetrakis(4-methylimidazole)dibromotetrakis(4-methylimidazole)copcopper(II) and per(II) (Näther et al., 2002a,b), and tetrakis(4-methylimidazolyl)bis(perchlorato-O)copper(II) (Su et al., 1992), as tetrakis(4-methylimidazol-1-yl)bis(cyanamidowell as nitrate)copper(II) (Kohout et al., 1999). The coordination sphere of the Cu^{II} atoms is completed by two longer contacts to two symmetry-equivalent Br atoms located above and below the tetragonal plane. The Cu-Br distances of 3.2851 (8) Å (Cu1-Br1) and 3.1957 (9) Å (Cu2-Br2) are strongly elongated due to Jahn-Teller distortion and the coordination polyhedra around the Cu^{II} atoms can be described as strongly distorted octahedral.

Received 5 February 2002 Accepted 8 February 2002 Online 22 February 2002

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The crystal structure of the title compound, with labelling and displacement ellipsoids drawn at the 50% probability level [symmetry codes: (i) -x+1, -y+1, -z+1]. Hydrogen bonds are indicated by dashed lines.

The asymmetric unit contains two crystallographically independent half-complexes in which the 4-methylimidazole ligands, the water molecules and the Br atoms occupy general positions, whereas the Cu^{II} atoms are located on centres of inversion. In contrast to the non-hydrated compound dibromotetrakis(4-methylimidazole)copper(II) (Näther et al., 2002b), the title compound contains additional water molecules and crystallizes as the dihydrate. Therefore, this

compound represents a pseudo-polymorphic modification of the former compound. There are short N-H···Br and O-H...Br distances between the NH H atoms of the 4-methylimidazole ligand, as well as the OH H atoms of the water molecules, and the Br atoms. The distances and angles of these interactions indicate hydrogen bonding. The water molecules are additionally connected to the 4-methylimidazole ligand via N-H···O hydrogen bonding. From all of these intermolecular interactions, a three-dimensional hydrogen-bonded network results.

Experimental

The title compound was prepared by the reaction of 335.1 mg (4 mmol) 4-methylimidazole and 223.4 mg (1 mmol) copper(II) bromide in 5 ml water. The reaction mixture was stirred over a period of 3 d, filtered and was washed with dimethyl ether. The precipitate consists of a blue crystalline powder and a few blue single crystals suitable for X-ray structure determination.

 $R_{\rm int} = 0.037$

 $\theta_{\rm max} = 28.0^{\circ}$

 $h = 0 \rightarrow 13$

 $k = -14 \rightarrow 12$

 $l = -17 \rightarrow 16$

4 standard reflections

frequency: 120 min

intensity decay: none

Crystal data

·	
$[CuBr_2(C_4H_6N_2)_4]\cdot 2H_2O$	Z = 2
$M_r = 587.82$	$D_x = 1.658 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 9.891 (2) Å	Cell parameters from 78
b = 10.613 (2) Å	reflections
c = 13.063 (3) Å	heta = 10–18°
$\alpha = 94.854 \ (13)^{\circ}$	$\mu = 4.35 \text{ mm}^{-1}$
$\beta = 100.87 \ (2)^{\circ}$	T = 293 (2) K
$\gamma = 116.933 \ (13)^{\circ}$	Block, blue
$V = 1177.8 (4) \text{ Å}^3$	$0.14 \times 0.08 \times 0.06 \text{ mm}$

Data collection

AED-II four-circle diffractometer $\omega - \theta$ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998) $T_{\rm min}=0.687,\;T_{\rm max}=0.881$ 6010 measured reflections 5686 independent reflections 3712 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0519P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.043$ + 0.8939P] where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.111$ S=1.01 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.34 \ {\rm e} \ {\rm \AA}^{-3}$ 5686 reflections $\Delta \rho_{\rm min} = -1.22 \text{ e} \text{ } \text{\AA}^{-3}$ 274 parameters Extinction correction: SHELXL97 H-atom parameters constrained Extinction coefficient: 0.0052 (8)

Table 1

Selected geometric parameters (Å, °).

Cu1-N1	2.003 (3)	Cu2-N7	1.993 (3)
Cu1-N3	2.014 (3)	Cu2-N5	2.029 (3)
N1 ⁱ -Cu1-N3	92.93 (12)	N7-Cu2-N5	91.15 (12)
N1-Cu1-N3	87.07 (12)	N7 ⁱⁱ -Cu2-N5	88.85 (12)

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 2 - x, 2 - y, 2 - z.

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2N\cdots Br2^{i}$	0.86	2.60	3.443 (3)	168
N4-H4N···O1 ⁱⁱ	0.86	2.02	2.863 (5)	165
N6−H6N···Br1 ⁱⁱⁱ	0.86	2.70	3.410 (4)	141
N8-H8N···O2 ^{iv}	0.86	1.96	2.803 (6)	167
N8-H8N···O3 ^{iv}	0.86	2.09	2.883 (17)	154
O1-H1O1···O3	0.82	2.41	3.044 (18)	135
$O1-H1O1\cdots Br2^{v}$	0.82	3.02	3.773 (4)	154
O1-H2O1···Br1	0.82	2.58	3.371 (4)	163
$O2-H1O2\cdots Br2^v$	0.82	2.62	3.430 (5)	169
O2−H2O2···Br2	0.82	2.49	3.255 (5)	157

Symmetry codes: (i) 2 - x, 1 - y, 2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 + x, 1 + y, z; (iv) x, 1 + y, z; (v) 1 - x, 1 - y, 2 - z.

The aromatic H atoms were positioned with idealized geometry (C-H = 0.93 Å and N-H = 0.86 Å). The positions of the methyl H atoms were idealized (C-H = 0.96 Å), then the methyl groups were refined as rigid groups allowed to rotate but not tip. The water H atoms were located in a difference map and the bond lengths were set to ideal values (O-H = 0.82 Å). All H atoms were refined with fixed isotropic displacement parameters $[U_{iso}(H) = 1.5U_{eq}(C_{methyl}), 1.5U_{eq}(O), 1.2U_{eq}(C_{methylene})$ or $1.2U_{eq}(N)]$, using a riding model. One water O atom is disordered over two positions and these were refined with a split model (O2 and O3) and site-occupation factors of

0.8 for O2 and 0.2 for O3. The H atoms attached to O3 were ignored. Atom O3 was refined with an isotropic displacement parameter.

Data collection: *DIF*4 (Stoe & Cie, 1992); cell refinement: *DIF*4; data reduction: *REDU*4 (Stoe & Cie, 1992); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *CIFTAB* in *SHELXL*97.

This work was supported by the state of Schleswig-Holstein. We are very thankful to Professor Dr Wolfgang Bensch for financial support and the opportunity to use his experimental equipment.

References

Bruker (1998) SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Kohout, J., Hvastijová, M., Kožíšek, J., Díaz, J. G., Valko, M., Jäger, L. & Svoboda, I. (1999). *Inorg. Chim. Acta*, 287, 186–192.

Näther, C., Wriedt, M. & Jeß, I. (2002a). Acta Cryst. E58, m39-m40.

Näther, C., Wriedt, M. & Jeß, I. (2002b). Acta Cryst. E58, m63-m64.

Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of

Göttingen, Germany. Su, C.-C., Chen, J.-H., Hwang, K.-Y., Liu, S.-J., Wang, S.-W., Wang, S.-L. & Liu, S.-N. (1992). *Inorg. Chim. Acta*, **196**, 231–236.

Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1998). X-SHAPE. Version 1.03. Stoe & Cie, Darmstadt, Germany.